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Abstract 

In this article by providing an elliptic curve HM (Non – Singular 
cubic curve HM), we prove that Fermat's Last Theorem (FLT) for 
every odd number except one is a special case of an elliptic curve of 
HM and in fact this (flexibility) reduction of Fermat's equation (in the 
form of an elliptic curve) has helped to prove FLT in short and cross – 
cut and brought to fruition the idea of elliptic curve short and 
understand able for final proof of FLT for every odd number greater 
than one. We know about the history of FLT and proving special 
cases of 3n   and 4n   in an independent way and about trends of a 
controversial and wanderful ideas of general case of 3n   in which 
the most important ones are Wilesʼ  Theorem and Taylor – Wiles 
regarding proving Taniyama – Shimura – Weil conjecture for elliptic 
curves. 

 

Key Words: Equation – Theorem – Elliptic – Curve – Conjecture 

 

 



www.komhm.com 
 

 

 

 

 Introduction 

We know about the history of Fermat's Last Theorem and proving special 
cases of 3n   and 4n   in an independent way and about trends of 
controversial and wonderful ideas of general case of 3n   in which the 
most important ones are Wile's Theorem and Taylor – Wiles regarding 
proving Taniyama – Shimura – Weil conjecture for elliptic curves. 

 Introduction to Fermat's Last Theorem & Elliptic curves 

The announcement of year 1993 the Fermat's Last Theorem was an 
exciting event for the entire mathematics community. This Introduction 
will discuss the mathematical history of Fermat's Last Theorem (which 
we will abbreviate throughout as FLT), broken up into the following 
periods: 

1. Diophantus to Euler (250-1783 A.D.) 
2. Euler to Frey (1783 – 1982 A.D.) 
3. Frey to Wiles (1982 – 1993 A.D.) 

We will give only an Introduction to the story of FLT, and out account is 
by no means definitive. I hope that the Introduction succeeds in conveying 
the flavor of this truly wonderful mathematics. 

Hence the basic claim of FLT is that the equation n n nx y z  has no 

solutions when , ,x y z  are nonzero integers and 2n  . 

1. Diophantus to Euler 

Generations of mathematical historians have debated over whether Fermat 
really did have a Proof, though many experts doubt that he did. 

For one thing, the equation n n nx y z   was atypical for Fermat – the 
vast majority of the other equations he studied dealt with exponents 4 .  
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Also, in his correspondence, he only stated FLT for the exponent 3n  . 
As for Fermat's "marvelous proof ", it probably used the technique of 
infinite descent. His descent argument for 4n   is actually known; it can 
be found in Fermat's proof that the area of a right triangle with integral 
sides cannot be a square. This proof is given in one of his marginal notes, 
although even  here, Fermat complains that there isn't enough room to 
give 3the proof "with all detail". It seems likely that Fermat thought that 
his proofs for  3n   and 4n   generalized, and they almost certainly 
didn't. 

2. Euler to Frey. This section is only a sketch of more than two hundred 
years of beautiful and wonderful number theory. Here are some of the 
highlights of the 19th century work on FLT: 

 By the early 1800s, all of Fermat's problems were solved except for FLT 
(thus justifying the name, FLT). 

 1816 – The French Academy announces a prize for a solution to FLT. 
 In the 1820's Sophie Germain shows that if p  and 2 1p   are prime, then 

P P Px y z   has no solution with p xyz  . This is the so – called case I 

of FLT. (Case II is wherep xyz  and is usually regarded as being much 

harder). 
 1825 – Dirichlet and Legendre prove FLT for 5n  . 
 1832 – Dirchlet, after trying to prove it for  7n   (proves FLT for 

14,21,28,...,7n k  ). 

 1839 – Lameprove FLT for 7n  . 
 1847 – Lame  and Cauchy present false proofs of FLT for general n. 
 1844 – 1857 – kummer's work on FLT: 

 1847 – Theorem: FLT hold for p  if  p h (such p  are called 
regular primes). 
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 1847 – Theorem: p  is regular if p  doesn't divide the numerator of 

the Bernoulli numbers 2 4 3, ,..., .PB B B   (We can define the 

Bernoulli numbers by the power series: 
1 !1 n

n
x
x Bn x

ne




 


 ). 

 A corollary of this result is that for 100p  , only 37, 59 and 67 
are irregular. 

 1850 – The French Academy offers a second prize for a solution to 
FLT. 

 1856 – At Cauchy's suggestion, the Academy withdraws the prize 
and then awards a medal to kummer. 

 1857 – kummer develops complicated criteria for proving FLT for 
certain irregular primes. There are some gaps in his proofs which 
are later filled in by Vandiver in the 1920s. These results establish 
FLT for 100p  . 

Here are some highlights of the history of FLT after kummer's. 

 1908 – The Wolfskehl prize for a solution to FLT is announced. 
Later inflation in the German mark reduces the value of this prize 
considerably, but does not reduce the flow of crank solutions 
submitted. 

 1909 – Wieferich proves P P Px y z  and p xyz  (case I of 
FLT), 

then   12 P  1  . This is a strong congruence which is particularly 
easy to check on a computer. 

 1953 – Inkeri proves that if  P P Px y z   and x y z  , then 

    32 log 3
p

x p p p  in case I and 3 4px p   in case II. 

 1971 – Brillhart, Tonascia and Weinberger show that case I of 
FLT is true for all primes less than 93.10 .   

 1976 – Wagstaff shows that FLT is true for all primes less than 
125,000.                                                                                                                   
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There results imply that any counterexample to FLT must involve 

125,003p   and   375,005 1,911,370125,003 4.5 10z y x      (In 

1992, as a byproduct of other computations, the lower bound on 
the exponent was raised to 4,000,000p  ). 

3. Frey to Wiles. In 1983, Fatlings proved the Morell's Conjecture, which 

implies that a polynomial equation with rational coefficients  , 0Q x y   

has only finitely many rational solutions when the curve has 2genus   
(for a definition of genus, see the sidebar "The genus of an algebraic 
curve"). Since 1n nx y   has 2genus   for 4n  , there are only 
finitely many rational solutions by the Mordell's Conjecture. Then 
clearing denominators, it follows easily that n n nx y z  has only 
finitely many relatively prime integer solutions. 

 

Attention (The genus of an algebraic curve) 

 The genus of a curve given by a polynomial equation ( , ) 0p x y  of 

degree n can be defined in a variety of ways. When the equation is 
sufficiently smooth (which is true for the Fermat's curve 

1n nx y  ), then the genus is    1 2 2g n n   . This 2is   

when 4n  .   

 Topologically, the solutions of  , 0p x y   over the complex 

numbers form a compact Riemann surface minus a finite set of 
points, and then the genus is just the usual genus of this compact 
real 2 – dimensional manifold. 

 Analytically, a Riemann surface is a compact complex 1-
dimensional manifold, and one can define the notion of a 
holomorphic 1-form. Then the genus is the maximum number of 
linearly independent holomorphic 1 – forms on the surface. 
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 For example, the Riemann sphere has genus Zero, so that there are 
no holomorphic 1- form, while the elliptic curve 

2 3 2y Ax Bx Cx D     

has genus 1, and up to a constant, dx
y

 is the only holomorphic 1-

form. 

 Granville and Heath – Brown, aided by an observation of Filaseta, 
used the above finiteness result to show that FLT holds for "most" 
exponents, in the sense that if you look at all exponents – prime 
and composite – from 3 to n, the percentage where FLT could fail 
approaches Zero as n increases. 

 Adelman and Heath – Brown showed that case I of FLT was true 
for infinitely many prime exponents. 

 By the end of the 1980's, there were several conjectures in number 
theory which, if proved, would implyFLT , though sometimes 
only for sufficiently large exponents (see the sidebar "Conjectures 
that imply Fermat's Last Theorem "). This showed that FLT was 
not an isolated oddity, but rather was intimately connected to other 
parts of number theory. Frey showed that nontrivial Solution to 
FLT give rise to very special elliptic curves, which we shall call 
Frey curves. His basic insight was that Frey curves were so special 
that they couldn't be modular. Hence, if the Taniyama – Shimura 
conjecture were true, Frey curves couldn't exist, and FLT would 
follow. 
If P P Pa b c   is a solution to FLT, then the associated Frey 
curve is ( :F  The minimal discriminant of the Frey curve) 

   2 P Py x x a x b   ,   282
P

F abc   

As usual, we assume a, b, c, are nonzero relatively prime integers 
and P is an odd prime. This is an elliptic curve over the rational 
numbers Q, similar to the equation  
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2 3 2y x   
Considered by Fermat. In general, an elliptic curve over Q is given 
by an equation of the form 

2 3 2y Ax Bx Cx D     
Where A, B, C, D are rational and the cubic polynomial in x on the 
right hand side of the equation has distinct roots. Elliptic curves 
are a large and important part of modern number theory. 

 Attention (Elliptic curves). The Taniyama – Shimura Conjecture 
states that all elliptic curves over rational numbers are modular. As 
we will explain, the work of Frey, Sere and Rabbet shows that this 
Conjecture implies FLT for all exponents. 

 

 Elliptic curves 

Elliptic curves are a special kind of algebraic curves which have a very 
rich arithmetical structure. 

There are several fancy ways of defining them. But for our purposes we 
can just define them as the set of points satisfying a polynomial equation 
of a certain form. To be specific, consider an equation of the form 

2 3 2
1 3 2 4 6,y a xy a y x a x a x a       

Where the ia  are integers (There is a reason for the strange choice of 

indices on the ia , but we won't go into it here). We want to consider the 

set of points  ,x y which satisfy this equation. 

To make things easier, let us focus on the special case in which the 
equation is of the form 

 2 3 2 ( ) *y x Ax Bx C g x      
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With ( )g x a cubic polynomial (in other words, we're assuming 1 3 0a a 

). In this case (*), it's very easy to determine when there can be singular 
points, and even what sort of singular points they will be. If we put 

2( , ) ( ),f x y y g x   

Then we have 

( , ) ( )f x y g x
x
  


 And  ( , ) 2 ,f x y y
y
 


 

We know, the curve will be smooth if there are no common solutions of 
the equations 

( , ) 0 , ( , ) 0 , ( , ) 0 (**)f ff x y x y x y
x y
   
 

 

Attention 

We know, from elementary analysis, that an equation ( , ) 0f x y   defines a 

smooth curve exactly when there are no points on the curve at which both partial 
derivatives of f  vanish. 

In other words, the curve will be smooth if there are no common solutions of the 
equations (**). 

And the condition for a point to be "bad" be comes 

2 ( ) , ( ) 0 , 2 0y g x g x y     

Which boils down to ( ) ( ) 0.y g x g x    In other words, a point will be "bad" 

exactly when its y - coordinate is Zero and its x - coordinate is a double root of 
the polynomial ( )g x . Since ( )g x is of degree 3, this gives us only three 

possibilities: 
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 ( )g x has no multiple roots, and the equation defines an elliptic curve 

(Three distinct roots),  (For example, elliptic curve 2 3y x x   has three 
distinct  roots). 

 ( )g x  has a double root (curve has a node), (For example, curve 
2 3 2y x x   has a node). 

 ( )g x has a triple root (curve has a cusp), (For example, curve 2 3y x  has 

a cusp). 

Attention 

If 1 2,x x and 3x are the roots of the polynomial ( )g x , the discriminant for the 

equation 2 ( )y g x turns out to be  ( ) 0g x   

2 2 2
1 2 1 3 2 3( ) ( ) ( )k x x x x x x      

where k is a constant. 

This does just what we want: 

If two of the roots are equal, it is Zero, and if not, not. Furthermore, it is not too 
hard to see that  is actually a polynomial in the coefficients of  ( )g x , which is 

what we claimed. In other words, all that the discriminant is doing for us is 
giving a direct algebraic procedure for determining whether there are singular 
points. 

While this analysis applies specifically to curves of the form 2 ( ),y g x  it 

actually extends to all equations of the sort we are considering there is at most 
one singular point, and it is either a node or a cusp. 

Attention 

With some examples in hand, we can proceed to deeper waters. In order to 
understand the connection we are going to establish between elliptic curves and 
Fermat's Last Theorem, we need to review quite a large portion of what is 
known about the rich arithmetic structure of these curves. 
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Conclusion  

Elliptic curve of the form 

2 3 2 ( )y x Ax Bx C g x      

is a elliptic curve of Non – Singular if ( )g x  has not a double root or 

a triple root. In fact below equation 

3 2( ) 0g x x Ax Bx C      

has three distinct roots, if  

     2 2 29 4 3 3 0HM AB C A B B AC        

Attention  

If 0HM  then ( )g x has no multiple roots, and 2 ( )y g x is a  

Non –Singular cubic elliptic curve. 

Here now, we offer Main & Final HM theorems. 

 Main HM Theorem (Reducing Fermat's equation to equation hm) 

If  , 1h m   and Fermat's equation 

 2 , 0 ; *P P Pp abc a b c     

have non-Zero answers, then generalized equation hm should have answer 
like this 

   , 1 , * *h h mh m x y z    

Reverse, if equation (**) for h p  for at least one 2m   has no answer, 

then Fermat's equation (*) for p  has no answer. 

 Final HM Theorem (Reducing (*) to cubic elliptic curve) 

Fermat's equation (*) with the condition of  , 1m p   is reducable to  
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 

2

2

2

1 1

1 1

1 1

I.

II. * **

III.

m m m m

m m m m

m m m m

x y z

x y z

x y z

  

  

  

 

 

 

 

If for 2m   with the condition of  , 1m p   one equation (***) has no 

answer then FLT is established. 

For example, for 2m   and (odd numbers) 3p   with the condition 

 2, 1p   is always true and equation (*) is reducable to an elliptic curve of 

cubic like this 2 3 3 0u v kw    or 

  2 3 2, 0.F H M H M AM BM C        

Conclusion  

Fermat's equation (*) for every (odd numbers) 3p   is reducable to a 

cubic curve.     

Theorem. The equation P P Pa b c   has no solutions with , ,a b c
nonzero for p  an prime. 

Proof. Suppose there were a solution  P P Pa b c , with our usual 
assumptions about p  and , ,a b c . Then we have a Frey curve and 
according to corollary of "The Frey curve is modular" has a cusp form 
F  of weight 2  and level N , where N  is the conductor. The Frey 
curve also has a Galois representation p  on the points of order p  on 
the curve (we won't define precisely what this means). The cusp form 
F  is linked to the representation p  in an especially nice way. 

Serre's level reduction conjecture deals with the pair  ,p F , and 

according to the hypotheses of the conjecture are satisfied for all odd 
primes l  dividing N . In such a case, the conjecture asserts that there 
is a cusp form F   of weight 2  and level N l  with 
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F  F  

and F   is also an eigen – form for the appropriate Hecke algebra (it 
takes some work to define what it means for modular forms to be 
congruent modulo p  ). This congruence means that F   is linked to p  

in the same way F   was, except that F   has smaller level N l  . But 

then, if l  is another odd prime dividing N , we can apply the level 

reduction conjecture to the pair  P,F  and get a cusp form F   with 

even smaller level N ll , and then apply it again to  P,F , etc. 

Eventually we get a cusp form F  of weight 2  and level 2  (b  is 
even). Here is a diagram of the argument so far:  

 

 

 

Solution of FLT → Frey curve 
 → Cusp form of level N  
 → Cusp form of level N

l
 

 
→ 

Cusp form of level 


N
ll

 

 �  
 → Cusp form of level 2  

 

But it is well known that there are no cusp forms of weight 2  and 

level 2  (see the sidebar "The modular curve  0X N "). Hence the 

above diagram self – destructs, and Fermat's Last Theorem is proved! 
Q.E.D. This brings us to the end of FLT, but certainly not to the end 
of the story. 
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 There is a lot more to say about the mathematics involved in the 
proof of Fermat's Last Theorem!. We can now offer the new proof. 

 

 

 

 

 Final – Main HM Theorem 
 

For every odd number 3p  Fermat's Last Theorem ( 0abc  ): 

P P Pa b c   

Special case is of an elliptic curve (Non – Singular Cubic Curve) HM: 

       2 3 2 2 33 3 *P P P PH M S M S M S S      

 Proof: 

It is enough in the below general elliptic curve: 

 2 3 2 * *y x Ax Bx C     

Or elliptic curve HM (*) we assume: 

   
 
 
   

3 -5
2

-2 2 3 -6

2 3 -6

22 2 3 6

33 2 3 6 2 3 6

-

3 3

3 3

PP

P PP P

PP P

PP P

P PP P P P

y H ac

x M ac a bc

A S a bc

B S a bc

C S S a bc a bc



 

 
  
 

 

 

 

 

   
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Then after replacing in (*) or (**): 

(odd numbers) 3 : P P Pp a b c    

Attention 

 Elliptic curve (*) is Non – Singular. 
 First Fermat's equation is multiplied HM . 

 We assume  3 2P PR M S R S H    . 

 We know that Proofed 3 3 3x y z  is an elliptic curve. 

 

Because: 

      2 3 2y x Ax Bx C    ; 

          2 3 2 2 33 3P P P PH M S M S M S S     ; 

      2 3 2 2 33 3P P P PH M S M S M S S     ; 

      32 P PH M S S   ; 

   
 

3 5
2

2 2 3 6

2 3 6

PP

P PP P

P

H ac

M ac a bc

S a bc



 



 
  
 



 

  

            2 2 3 6 2 3 6 2P P P PP P P P PM S ac a bc a bc ac         

   2

23 532 2 3 6 2

PPP PP PH ac a bc ac


   
   

 
  ; 
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    (odd numbers)      3 3 6 2 3 6 2 3 53 :
p p pp p pp a c a bc a c     ; 

    
2 223 3 6 2 3 6 2 3 5P P P P P P P P P Pa c a b c a c    ; 

    
22 3 6P P P P P Pa c a b c  

   ;  

    22 3 6P P P
HM a c  ; 

    0 : P P Pabc a b c    

Attention 

 Elliptic curve HM (*) is Non – Singular, because: 

     3 2 2 33 3 0P P P PM S M S M S S       ; 

3
1 2,3,P PM S S M i          (Three distinct roots) 
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