References on some historical parts of the book

Ÿ Carmichael, R. D. The Theory of Numbers. New York: John Wiley & Sons, (1914).

Ÿ Davenport, H. The Higher Arithmetic. London: Hutchinsonís University Library, (1952).

Ÿ Dickson, L. E. History of the Theory of Numbers. Washington: Carnegie Institution, Vol. 1, (1919); Vol. 2, (1920); Vol. 3, (1923). (Reprinted by Chelsea Publishing Co., New York.)

Ÿ Dickson, L. E. Introduction to the Theory of Numbers. Chicago: University of Chicago Press, (1929).

Ÿ Gelfond, A. O. The Solution of Equations in Integers. San Francisco: W. H. Freeman and Co., (1961). (Translated from the Russian by J. B. Roberts.)

Ÿ Griffin, Harriet. Elementary Theory of Numbers. New York: McGraw-Hill Book Co., (1954).

Ÿ Hardy, G. H., and E. M. Wright. An Introduction to the Theory of Numbers, third edition. Oxford: Clarenden Press, (1954).

Ÿ Jones, B. W. The Theory of Numbers. New York: Holt, Rinehart & Winston, (1955).

Ÿ Landau, E. Elementary Number Theory. New York: Chelsea Publishing Co., (1958). (Translated from the German by Jacob E. Goodman.)

Ÿ LeVeque, W. J. Topics in Number Theory. 2 vols. Reading, Mass: Addison-Wesley Publishing Co., (1956).

Ÿ LeVeque, W. J. Elementary Theory of Numbers. Reading, Mass.: Addison-Wesley Publishing Co., (1962).

Ÿ Nagell, T. Introduction to Number Theory. New. York: John Wiley & Sons, (1951).

Ÿ Niven, I., and H. S. Zuckerman. An Introduction to the Theory of Numbers. New York: John Wiley & Sons, (1960).

Ÿ Ore, Oystein. Number Theory and its History. New York: McGraw-Hill Book Co., (1948).

Ÿ Rademacher, Hans. Lectures on Elementary Number Theory. New York: Blaisdell Publishing Co., (1964).

Ÿ Shanks, Daniel. Solved and Unsolved Problems in Number Theory. Washington, D.C.: Spartan Books, (1962).

Ÿ Stewart, B. M. Theory of Numbers, second edition. New York: The Macmillan Co., (1964).

Ÿ Uspensky, J. V., and M. A. Heaslet. Elementary Number Theory. New York: McGraw-Hill Book Co., (1939).

Ÿ Vinogradov, I. M. An Introduction to the Theory of Numbers. New York: Pergamon Press, (1955). (Translated from the sixth Russian edition by Helen Popova.)

Ÿ Wrigh, H. N. First Course in Theory of Numbers. New York: John Wiley & Sons, (1939).

Ÿ Borevich, Z. I., and I. R. Shafarevich [1966]. Number Theory. (Translated from the (1964) Russian edition.) Pure and Applied Mathematics, vol. 20. Academic Press, New York Ė London.

Ÿ Bourbaki, N. (1972). Elements of Mathematics. Commutative Algebra. Hermann, Paris; Addison-Wesley, Reading Mass.

††††† Ÿ Boyer, C. B. (1968). A History of Mathematics. J. Wiley & Sons, New York.

Ÿ Brauer, A., and R. L. Reynolds (1951). "On a theorem of Aubry-Thue." Canad. Journ. Math. 3: 367-374.

Ÿ Brillhart, J., D. H. Lehmer, and J. L. Selfridge (1975). "New primality criteria and factorizations of ." Math. Of Comp. 29: 620-647.

Ÿ Brent, R. P. (1975). "Irregularities in the distribution of primes and twin primes." Math. Of Comp. 29: 43-56.

††††† Ÿ Neal. H. Mc Coy. "The Theory of Numbers" (1990).

††††† Ÿ Taussky, O. (1970). "Sums of squares." Amer. Math. Monthly 77: 805-830.

Ÿ Uhler, H. S. (1948). "On all of Mersenneís numbers, particularly " . Proc. Nat. Acad Sci. USA 34: 102-103.

Ÿ Uspensky, J. V., and M. A. Heaslet (1939). Elementary Number Theory. McGraw-Hill, New York.

Ÿ Wagstaff, S. (1976). "Fermatís last theorem is true for any exponent less than 100000." Notices, Amer. Math. Soc. 23: A-53.

Ÿ Niven, I., and B. Powell [1976]. "Primes in certain arithmetic progressions." Amer. Math. Monthly 83: 467-469.

Ÿ Skewes, S. (1955). On the difference "". (II) Proc. London Math. Soc. (3) 5: 48-70.

Ÿ Ezra Brown, Three Fermat Trails to Elliptic Curves, The College Mathematics Journal, 31(2000), no. 3, 162-172.

Ÿ David A. Cox, Introduction to Fermatís Last Theorem, American Mathematical Monthly, 101 (1994), no. 1, 3-14.

Ÿ Henri Darmon, A Proof of the Full Shimura-Taniyama-Weil Conjecture is announced, Notices of the American Mathematical Society, December (1999), 1397-1401.

Ÿ Harold M. Edwards, Fermatís Last Theorem: A Genetic Introduction to Algebraic Number Theory, Springer-Verlag, New York (1977).

Ÿ Fernando Q. Gouvea, A Marvelors Proof, American Mathematical Monthly, 101 (1994), no. 3, 203-222.

Ÿ Anthony W. knapp, Elliptic Curves, Princeton University Press, Princeton, (1992).

Ÿ Barry Mazur, Number Theory as gadfly, American Mathematical Monthly 98 (1991), 593-610.

Ÿ Barry Mazur, on the Passage from local to global in number theory, Bulletin of the American Mathematical society, 29 (1993), 14-50.

Ÿ Alf van der poorten, Notes on Fermatís Last Theorem, John Wiley & Sons, New York, (1996).

Ÿ Paulo Ribenboim, 13 Lectures on Fermatís Last Theorem, Springer-Verlag, New York (1979).

Ÿ Kenneth A. Ribet, and Brian Hayes, Fermatís Last Theorem, and Modern Arithmetic, American Scientist, 82 (1994), 144-156.

††††† Ÿ R. Courant and H. Robbins. "WHAT IS MATHEMATICS" (1970). New York.†

††††† Ÿ W. Sierpinski "Elementary Theory of Numbers" (1964).

††††† Ÿ Eric Temple Bell. "Men of mathematics", (1936).

††††† Ÿ Emile Borel. "Prime Numbers" (1964).

Ÿ Josepth H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, New York (1986).

Ÿ Joseph H. Silverman, and John H. Tatc, Rational Points on Elliptic Curves, Springer-Verlag, New York, (1992).

Ÿ Richard Taylor, and Andrew Wiles, Ring-theoretic Properties of certain Hecke algebras, Annals of Mathematics (2) 141 (1995), 553-572.

Ÿ Andrew Wiles, Modular elliptic curves and Fermatís last theorem, Annals of Mathematics (2) 141 (1995), 443-551.

††††† Ÿ Postnikov, Mikhail Mikhailovich. "Fermatís last theorem" (2000).†

Ÿ Rota, G-C. (1964)."On the foundations of combinatorial theory". I. Theory of Mobius functions". Z. Wahrscheinlickeitstheorie 2: 340-368.

Ÿ Samuel, P. (1967). Algebraic Theory of Numbers. Houghton Miffin Co., Boston, Mass.

Ÿ Serre, J.-P. (1973). A Course in Arithmetic. Graduate Texts in Math. Vol. 7. Springer-Verlag, New York.

Ÿ Shanks, D. (1972). "Five number-theoretic algorithms." Proc., 2nd , Manitoba Confer, on Numer. Math., 51-70. Univ. of Manitoba, Winnipeg.

Ÿ Siegel, C.L. (1929). Uber einige Anwendungen diophantischer Approximationen. Abhandl. Preuss. Akad. Wissensch. Physik. Math. Klasse, Nr. 1.

Ÿ Robinson, R. M. (1957). "The converse of Fermatís theorem." Amer. Math. Monthly 64: 703-710.

Ÿ Pollard, H., and H. G. Diamond (1975). The Theory of Algebraic Numbers. Carus Math. Monographs, vol. 9. Math. Assn. Amer.

††††† Ÿ V.Brun, Łber hypothesenbildung, Arc.Math.Naturvidenskab 34 (1914), 1-14

Ÿ H. Darmon and A. Granville, On the equations †and ,Bull. London Math. Soc. 27 (1995), 513-543.

Ÿ H. Darmon and L. Merel, Winding quotients and some variants of Fermat's last theorem , preprint.

Ÿ S. Lang, Old and new conjectured Diophantine inequalities, Bull. Amer. Math. Soc. 23 (1990), 37-75.

Ÿ A.Wiles, Modular elliptic curves and Fermat's last Theorem, Ann. Math. 141 (1995), 443-551††

Ÿ Department of Mathematics, Madreseh publications offliated to organization for Educational Research and planning, Ministry of Education, "Encyclopedia of Mathematics" (2000).

Ÿ D.Goldfeld, Beyond the Last Theorem, Math Horizons (September 1996), 26-31, 34.