· References on some historical parts of the book
Carmichael, R. D. The Theory of Numbers. New York: John Wiley & Sons, (1914).
Davenport, H. The Higher Arithmetic. London: Hutchinson’s University Library, (1952).
Dickson, L. E. History of the Theory of Numbers. Washington: Carnegie Institution, Vol. 1, (1919); Vol. 2, (1920); Vol. 3, (1923). (Reprinted by Chelsea Publishing Co., New York.)
Dickson, L. E. Introduction to the Theory of Numbers. Chicago: University of Chicago Press, (1929).
Gelfond, A. O. The Solution of Equations in Integers. San Francisco: W. H. Freeman and Co., (1961). (Translated from the Russian by J. B. Roberts.)
Griffin, Harriet. Elementary Theory of Numbers. New York: McGraw-Hill Book Co., (1954).
Hardy, G. H., and E. M. Wright. An Introduction to the Theory of Numbers, third edition. Oxford: Clarenden Press, (1954).
Jones, B. W. The Theory of Numbers. New York: Holt, Rinehart & Winston, (1955).
Landau, E. Elementary Number Theory. New York: Chelsea Publishing Co., (1958). (Translated from the German by Jacob E. Goodman.)
LeVeque, W. J. Topics in Number Theory. 2 vols. Reading, Mass: Addison-Wesley Publishing Co., (1956).
LeVeque, W. J. Elementary Theory of Numbers. Reading, Mass.: Addison-Wesley Publishing Co., (1962).
Nagell, T. Introduction to Number Theory. New. York: John Wiley & Sons, (1951).
Niven, I., and H. S. Zuckerman. An Introduction to the Theory of Numbers. New York: John Wiley & Sons, (1960).
Ore, Oystein. Number Theory and its History. New York: McGraw-Hill Book Co., (1948).
Rademacher, Hans. Lectures on Elementary Number Theory. New York: Blaisdell Publishing Co., (1964).
Shanks, Daniel. Solved and Unsolved Problems in Number Theory. Washington, D.C.: Spartan Books, (1962).
Stewart, B. M. Theory of Numbers, second edition. New York: The Macmillan Co., (1964).
Uspensky, J. V., and M. A. Heaslet. Elementary Number Theory. New York: McGraw-Hill Book Co., (1939).
Vinogradov, I. M. An Introduction to the Theory of Numbers. New York: Pergamon Press, (1955). (Translated from the sixth Russian edition by Helen Popova.)
Wrigh, H. N. First Course in Theory of Numbers. New York: John Wiley & Sons, (1939).
Borevich, Z. I., and I. R. Shafarevich [1966]. Number Theory. (Translated from the (1964) Russian edition.) Pure and Applied Mathematics, vol. 20. Academic Press, New York – London.
Bourbaki, N. (1972). Elements of Mathematics. Commutative Algebra. Hermann, Paris; Addison-Wesley, Reading Mass.
Boyer, C. B. (1968). A History of Mathematics. J. Wiley & Sons, New York.
Brauer, A., and R. L. Reynolds (1951). "On a theorem of Aubry-Thue." Canad. Journ. Math. 3: 367-374.
Brillhart, J., D. H.
Lehmer, and J. L. Selfridge (1975). "New primality criteria and
factorizations of ." Math. Of Comp. 29: 620-647.
Brent, R. P. (1975). "Irregularities in the distribution of primes and twin primes." Math. Of Comp. 29: 43-56.
Neal. H. Mc Coy. "The Theory of Numbers" (1990).
Taussky, O. (1970). "Sums of squares." Amer. Math. Monthly 77: 805-830.
Uhler, H. S. (1948).
"On all of Mersenne’s numbers, particularly " . Proc. Nat. Acad Sci. USA 34:
102-103.
Uspensky, J. V., and M. A. Heaslet (1939). Elementary Number Theory. McGraw-Hill, New York.
Wagstaff, S. (1976). "Fermat’s last theorem is true for any exponent less than 100000." Notices, Amer. Math. Soc. 23: A-53.
Niven, I., and B. Powell [1976]. "Primes in certain arithmetic progressions." Amer. Math. Monthly 83: 467-469.
Skewes, S. (1955). On
the difference "". (II) Proc. London Math. Soc.
(3) 5: 48-70.
Ezra Brown, Three Fermat Trails to Elliptic Curves, The College Mathematics Journal, 31(2000), no. 3, 162-172.
David A. Cox, Introduction to Fermat’s Last Theorem, American Mathematical Monthly, 101 (1994), no. 1, 3-14.
Henri Darmon, A Proof of the Full Shimura-Taniyama-Weil Conjecture is announced, Notices of the American Mathematical Society, December (1999), 1397-1401.
Harold M. Edwards, Fermat’s Last Theorem: A Genetic Introduction to Algebraic Number Theory, Springer-Verlag, New York (1977).
Fernando Q. Gouvea, A Marvelors Proof, American Mathematical Monthly, 101 (1994), no. 3, 203-222.
Anthony W. knapp, Elliptic Curves, Princeton University Press, Princeton, (1992).
Barry Mazur, Number Theory as gadfly, American Mathematical Monthly 98 (1991), 593-610.
Barry Mazur, on the Passage from local to global in number theory, Bulletin of the American Mathematical society, 29 (1993), 14-50.
Alf van der poorten, Notes on Fermat’s Last Theorem, John Wiley & Sons, New York, (1996).
Paulo Ribenboim, 13 Lectures on Fermat’s Last Theorem, Springer-Verlag, New York (1979).
Kenneth A. Ribet, and Brian Hayes, Fermat’s Last Theorem, and Modern Arithmetic, American Scientist, 82 (1994), 144-156.
R. Courant and H. Robbins. "WHAT IS MATHEMATICS" (1970). New York.
W. Sierpinski "Elementary Theory of Numbers" (1964).
Eric Temple Bell. "Men of mathematics", (1936).
Emile Borel. "Prime Numbers" (1964).
Josepth H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, New York (1986).
Joseph H. Silverman, and John H. Tatc, Rational Points on Elliptic Curves, Springer-Verlag, New York, (1992).
Richard Taylor, and Andrew Wiles, Ring-theoretic Properties of certain Hecke algebras, Annals of Mathematics (2) 141 (1995), 553-572.
Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Annals of Mathematics (2) 141 (1995), 443-551.
Postnikov, Mikhail Mikhailovich. "Fermat’s last theorem" (2000).
Rota, G-C. (1964)."On the foundations of combinatorial theory". I. Theory of Mobius functions". Z. Wahrscheinlickeitstheorie 2: 340-368.
Samuel, P. (1967). Algebraic Theory of Numbers. Houghton Miffin Co., Boston, Mass.
Serre, J.-P. (1973). A Course in Arithmetic. Graduate Texts in Math. Vol. 7. Springer-Verlag, New York.
Shanks, D. (1972). "Five number-theoretic algorithms." Proc., 2nd , Manitoba Confer, on Numer. Math., 51-70. Univ. of Manitoba, Winnipeg.
Siegel, C.L. (1929). Uber einige Anwendungen diophantischer Approximationen. Abhandl. Preuss. Akad. Wissensch. Physik. Math. Klasse, Nr. 1.
Robinson, R. M. (1957). "The converse of Fermat’s theorem." Amer. Math. Monthly 64: 703-710.
Pollard, H., and H. G. Diamond (1975). The Theory of Algebraic Numbers. Carus Math. Monographs, vol. 9. Math. Assn. Amer.
V.Brun, über hypothesenbildung, Arc.Math.Naturvidenskab 34 (1914), 1-14
H. Darmon and A. Granville, On the equations and
,Bull. London Math.
Soc. 27 (1995), 513-543.
H. Darmon and L. Merel, Winding quotients and some variants of Fermat's last theorem , preprint.
S. Lang, Old and new conjectured Diophantine inequalities, Bull. Amer. Math. Soc. 23 (1990), 37-75.
A.Wiles, Modular elliptic curves and Fermat's last Theorem, Ann. Math. 141 (1995), 443-551
Department of Mathematics, Madreseh publications offliated to organization for Educational Research and planning, Ministry of Education, "Encyclopedia of Mathematics" (2000).
D.Goldfeld, Beyond the Last Theorem, Math Horizons (September 1996), 26-31, 34.